News Center
Current Trends in Flame Retardants for Thermoplastics
views:959
Release time:959
Flame retardants are a class of chemicals designed to provide passive fire protection to polymers under specific fire risk scenarios. The fire protection provided by the flame retardant can vary from ignition resistance to slowing of flame spread/heat release growth to smoke and toxic gas reduction. There is a very wide range of actions flame retardants can perform if chosen and implemented properly. It is important to note that every flame retardant solution must be tailored for a specific polymer and for a specific test.
In 2009 the global market for flame-retardant chemicals was more than 3 billion pounds, with a value of over $4 billion. This was expected to reach $6.1 billion by 2014. Detailed breakdowns of this market are only available in proprietary marketing reports such as those produced by the Business Communications Company . Important applications include aerospace, automotive, electronics & electrical goods, carpeting, textiles, mass transport (train, ships, subways), building & construction, military, and wire & cable.
In 2009 the global market for flame-retardant chemicals was more than 3 billion pounds, with a value of over $4 billion. This was expected to reach $6.1 billion by 2014. Detailed breakdowns of this market are only available in proprietary marketing reports such as those produced by the Business Communications Company . Important applications include aerospace, automotive, electronics & electrical goods, carpeting, textiles, mass transport (train, ships, subways), building & construction, military, and wire & cable.
A flame retardant will normally be used in a particular product if fire safety engineers anticipate a significant risk of fire exposure that threatens loss of life or property and which cannot be addressed with active fire protection (sprinklers or replacement with non-flammable materials). The amount of flame retardants used in each application will vary depending upon the flammability of the polymer and the severity of the fire risk.